The State of Art on Navigational Algorithm for Path Optimization of a Mobile Robot
نویسندگان
چکیده
Mobile robots are vital for automation industries, surveillance and mapping, hazardous operation like nuclear plants, landmine detection etc. The path of such robots is controlled by a navigational algorithm. Several algorithm have been proposed and tried out for navigation of an autonomous mobile robot (AMR) around the globe .Some of these determine the path which is feasible to reach the destination without collision, while other also tries to optimize .Key parameters of the navigation are distance and time (either or both) to reach the destination or cost of reaching the destination. The prevalent algorithm have used various technique like fuzzy logic, genetic algorithm, artificial neural network, dynamic programming, potential field method, bug algorithm, ant colony optimization etc. Many others have developed the specific algorithms in evolutionary manner stage by stage through various trials. This also includes a number of heuristic based algorithms. This article describes the important features of the current navigational algorithm for optimizing the path of an autonomous mobile robot (AMR).The relative merits and demerits and challenges of each of these have been identified with a view to obtaining a methodology of overcoming the challenges. Keywords— Autonomous mobile robot, Fuzzy logic, Genetic Algorithm, Artificial neural network, Robot motion Planning —————————— —————————
منابع مشابه
Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملTrajectory Tracking of a Mobile Robot Using Fuzzy Logic Tuned by Genetic Algorithm (TECHNICAL NOTE)
In recent years, soft computing methods, like fuzzy logic and neural networks have been presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot with a complicated kinematical model. After designing the fuzzy tracking controller, the membership functions an...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013